Machine Learning for Laser Pulse Shaping

Bachelor / Master Thesis Accelerator Physics / Computational Engineering June 28, 2023

Description

Dielectric laser accelerators (DLAs) are ultra-compact electron accelerators on a microchip with period lengths and apertures in the range of micrometers and maximum acceleration gradients of GV/m.

The dielectric laser accelerators rely on accurately **shaped laser pulses** that drive them. The knowledge on how the laser pulse arrives on each cell of the chip is however limited. In this project, a **virtual diagnostics** approach is to be pursued, running a simplified and fast simulation model in parallel to the continuously running experiment. By matching all inputs and outputs of the **physical and digital twins**, previously hidden parameters can be obtained heuristically, which helps tunning experiments with high dimensions of input parameters.

This thesis would be part of a three-year project with DESY and Universität Hamburg. The simulation tools are developed in close cooperation with the DESY working group conducting DLA experiments at the **Accelerator Research Experiment at SINBAD (ARES)**.

Figure 1: Fisheye-view of the ARES linac¹

Project milestones

- Modeling and simulating DLAs with the existing code DLAtrack6D²
- · Upgrade the existing tracking code to faster computing times
- · Setup of a machine learning tool for the required input data
- Optimization for maximal charge throughput in the DLA

Prerequisites

Basic knowledge of accelerator physics, numerics and machine learning and basic programming skills (Matlab, Python) are advantageous.

Institut of Accelerator Science and Electromagnetic Fields

Dr. Thilo Egenolf thilo.egenolf@tu-darmstadt.de Office: S2|17 140

Prof. Dr. Oliver Boine-Frankenheim boine-frankenheim@temf.tudarmstadt.de Office: S2|17 226

bp.tu-darmstadt.de

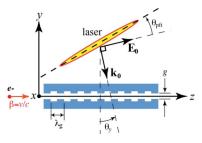


Figure 2: Schematic of DLA structure illuminated by pulse front tilted laser³

¹F. Burkart et al., The ARES Linac at DESY, JACoW LINAC2022 (2022), THPOJ001

²U. Niedermayer, T. Egenolf, O. Boine-Frankenheim, Beam dynamics analysis of dielectric laser acceleration using a fast 6D tracking scheme, Phys. Rev. Accel. Beams 20, 111302 (2017)

³D. Cesar et al., Enhanced energy gain in a dielectric laser accelerator using a tilted pulse front laser, Opt. Express 26, 29216-29224 (2018)